Question Paper with Solution

MATHEMATICS _ 2 Sep. _ SHIFT - 1
MATHEMATICS _ 2 Sep. _ SHIFT - 1 AIIMS NEET
xı, xil \& xII Pass

Motion

H.O. : 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in | \boxtimes : info@motion.ac.in

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 1 A line parallel to the straight line $2 x-y=0$ is tangent to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{2}=1$ at the point $\left(x_{1}, y_{1}\right)$. Then $x_{1}^{2}+5 y_{1}^{2}$ is equal to :
(1) 6
(2) 10
(3) 8
(4) 5

Sol. 1
$\mathrm{T}: \frac{\mathrm{XX}}{1} 4-\frac{\mathrm{Yy}}{1}{ }_{2}^{2}=1$
$t: 2 x-y=0$ is parallel to T
$\Rightarrow T: 2 x-y=\lambda$
Now compare (1) \& (2)
$\frac{x_{1}}{\frac{4}{2}}=\frac{y_{1}}{2}=\frac{1}{\lambda}$
$x_{1}=8 / \lambda \& y_{1}=2 / \lambda$
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on hyperbola $\Rightarrow \frac{64}{4 \lambda^{2}}-\frac{4}{2 \lambda^{2}}=1$
$\Rightarrow 14=\lambda^{2}$
Now $=x_{1}^{2}+5 y_{1}^{2}$
$=\frac{64}{\lambda_{2}}+5 \frac{4}{\lambda_{2}}$
$=\frac{84}{14}$
$=6$ Ans.
Q. 2 The domain of the function $f(x)=\sin ^{-1}\left(\frac{|x|+5}{x^{2}+1}\right)$ is $(-\infty,-a] \cup[a, \infty)$. Then a is equal to :
(1) $\frac{\sqrt{17}-1}{2}$
(2) $\frac{\sqrt{17}}{2}$
(3) $\frac{1+\sqrt{17}}{2}$
(4) $\frac{\sqrt{17}}{2}+1$

Sol. 3
$-1 \leq \frac{|x|+5}{x^{2}+1} \leq 1$
$-x^{2}-1 \leq|x|+5 \leq x^{2}+1$
case-I
$-x^{2}-1 \leq|x|+5$
this inequality is always right $\forall x \in R$

case - II

$|x|+5 \leq x^{2}+1$
$x^{2}-|x| \geq 4$

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

$|x|^{2}-|x|-4 \geq 0$
$\left(|x|-\left(\frac{1+\sqrt{17}}{2}\right)\right)\left(|x|-\left(\frac{1-\sqrt{17}}{2}\right)\right) \geq 0$
$|x| \leq \frac{1-\sqrt{17}}{2} \cup|x| \geq \frac{1+\sqrt{17}}{2}$
not possible
$x \in\left(-\infty, \frac{-1-\sqrt{17}}{2}\right] \cup\left[\frac{1+\sqrt{17}}{2}, \infty\right)$
$a=\frac{1+\sqrt{17}}{2}$
Q. 3 If a function $f(x)$ defined by $f(x)=\left\{\begin{array}{l}a e^{x}+b e^{-x},-1 \leq x<1 \\ c x^{2}, \quad 1 \leq x \leq 3 \\ a x^{2}+2 c x, 3<x \leq 4\end{array}\right.$ be continuous for some $a, b, c \in R$ and $f^{\prime}(0)+f^{\prime}(2)=e$, then the value of a is :
(1) $\frac{1}{e^{2}-3 e+13}$
(2) $\frac{e}{e^{2}-3 e-13}$
(3) $\frac{e}{e^{2}+3 e+13}$
(4) $\frac{e}{e^{2}-3 e+13}$

Sol. 4
$f(x)$ is continuous
at $x=1 \Rightarrow a e+\frac{b}{e}=c$
at $\mathrm{x}=3 \Rightarrow 9 \mathrm{c}=9 \mathrm{a}+6 \mathrm{c} \Rightarrow \mathrm{c}=3 \mathrm{a}$
Now $f^{\prime}(0)+f^{\prime}(2)=e$
$\Rightarrow a-b+4 c=e$
$\Rightarrow a-e(3 a-a e)+4.3 a=e$
$\Rightarrow a-3 a e+a e^{2}+12 a=e$
$\Rightarrow 13 a-3 a e+a e^{2}=e$
$\Rightarrow a=\frac{e}{13-3 e+e^{2}}$
Q. 4 The sum of the first three terms of a G.P. is S and their product is 27 . Then all such S lie in :
(1) $(-\infty,-9] \cup[3, \infty)$
(2) $[-3, \infty)$
(3) $(-\infty, 9]$
(4) $(-\infty,-3] \cup[9, \infty)$

Sol. 4
$\frac{\mathrm{a}}{\mathrm{r}} \cdot \mathrm{a} \cdot \mathrm{ar}=27 \Rightarrow \mathrm{a}=3$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
$\frac{a}{r}+a+a r=S$
$\frac{1}{r}+1+r=\frac{S}{3}$
$r+\frac{1}{r}=\frac{S}{3}-1$
$r+\frac{1}{r} \geq 2$ or $r+\frac{1}{r} \leq-2$
$\frac{S}{3} \geq 3$ or $\frac{S}{3} \leq-1$
$S \geq 9$ or $S \leq-3$
$S \in(-\infty,-3] \cup[9, \infty)$
Q. 5 If $R=\left\{(x, y): x, y \in Z, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on the set of integers Z, then the domain of R^{-1} is :
(1) $\{-1,0,1\}$
(2) $\{-2,-1,1,2\}$
(3) $\{0,1\}$
(4) $\{-2,-1,0,1,2\}$

Sol. 1
$3 y^{2} \leq 8-x^{2}$
R : $\{(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1)$
$(-1,1),(-1,-1),(2,0),(-2,0),(-2,0),(2,1),(2,-1),(-2,1),(-2,-1)\}$
$\Rightarrow R:\{-2,-1,0,1,2\} \rightarrow\{-1,0,-1\}$
Hence $R^{-1}:\{-1,0,1\} \rightarrow\{-2,-1,0,1,2\}$
Q. 6 The value of $\left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3}$ is :
(1) $-\frac{1}{2}(1-i \sqrt{3})$
(2) $\frac{1}{2}(1-i \sqrt{3})$
(3) $-\frac{1}{2}(\sqrt{3}-i)$
(4) $\frac{1}{2}(\sqrt{3}-i)$

Sol. 3

$$
\begin{aligned}
& \left(\frac{1+\sin \frac{2 \pi}{9}+i \cos \frac{2 \pi}{9}}{1+\sin \frac{2 \pi}{9}-i \cos \frac{2 \pi}{9}}\right)^{3} \\
& =\left(\frac{1+\cos \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)+i \sin \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)}{1+\cos \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)-i \sin \left(\frac{\pi}{2}-\frac{2 \pi}{9}\right)}\right)^{3}
\end{aligned}
$$

हमारा विश्वास... हर एक विद्यार्यी है ख़ास

$=\left(\frac{1+\cos \frac{5 \pi}{18}+i \sin \frac{5 \pi}{18}}{1+\cos \frac{5 \pi}{18}-i \sin \frac{5 \pi}{18}}\right)^{3}$
$=\left(\frac{2 \cos \frac{5 \pi}{36}\left\{\cos \frac{5 \pi}{36}+i \sin \frac{5 \pi}{36}\right\}}{2 \cos \frac{5 \pi}{36}\left\{\cos \frac{5 \pi}{36}-i \sin \frac{5 \pi}{36}\right\}}\right)^{3}$
$=\left(\frac{\operatorname{cis}\left(\frac{5 \pi}{36}\right)}{\operatorname{cis}\left(\frac{-5 \pi}{36}\right)}\right)^{3}$
$=\operatorname{cis}\left(\frac{5 \pi}{36} \times 3+\frac{5 \pi}{36} \times 3\right)$
$=\operatorname{cis}\left(\frac{10 \pi}{12}\right)$
$=\operatorname{cis}\left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}+\frac{i}{2}$
Q. 7 Let $P(h, k)$ be a point on the curve $y=x^{2}+7 x+2$, nearest to the line, $y=3 x-3$. Then the equation of the normal to the curve at P is:
(1) $x+3 y-62=0$
(2) $x-3 y-11=0$
(3) $x-3 y+22=0$
(4) $x+3 y+26=0$

Sol.
C: $y=x^{2}+7 x+2$
Let P : (h, k) lies on

Curve $=\mathrm{k}=\mathrm{h}^{2}+7 \mathrm{~h}+2$
Now for shortest distance

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
$M_{T} l_{p}^{c}=m_{L}=2 h+7=3$
$\mathrm{h}=-2$
$\mathrm{k}=-8$
P : $(-2,-8)$
equation of normal to the curve is perpendicular to $L: 3 x-y=3$
N : $x+3 y=\lambda$
\downarrow Pass $(-2,-8)$
$\lambda=-26$
$N: x+3 y+26=0$
Q. 8 Let A be a 2×2 real matrix with entries from $\{0,1\}$ and $|A| \neq 0$. Consider the following two statements:
(P) If $A \neq I_{2}$, then $|A|=-1$
(Q) If $|A|=1$, then $\operatorname{tr}(A)=2$,
where I_{2} denotes 2×2 identity matrix and $\operatorname{tr}(A)$ denotes the sum of the diagonal entries of A. Then:
(1) Both (P) and (Q) are false
(2) (P) is true and (Q) is false
(3) Both (P) and (Q) are true
$(4)(P)$ is false and (Q) is true

Sol. 4
$P: A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \neq I_{2} \&|A| \neq 0 \&|A|=1$ (false)
$\mathrm{Q}: \mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=1$ then $\operatorname{Tr}(\mathrm{A})=2$ (true)
Q. 9 Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is:
(1) $\frac{4}{17}$
(2) $\frac{8}{17}$
(3) $\frac{2}{5}$
(4) $\frac{2}{3}$

Sol. 2

$$
1 \text { to } 30
$$

boxI
Prime on I
$\{2,3,5,7,11,13,17,19,23,29\}$
31 to 50
box II
Prime on II
$\{31,37,41,43,47\}$
A : selected number on card is non - prime
$P(A)=P(I) \cdot P(A / I)+P(I I) \cdot P(A / I I)$

CRASH COURSE

FOR JEE ADVANCED 2020

Go Premium at ₹ 1100

हमारा विश्वास... हए एक विद्यार्यी है खुास

$=\frac{1}{2} \times \frac{20}{30}+\frac{1}{2} \cdot \frac{15}{20}$
Now, $\mathrm{P}(\mathrm{I} / \mathrm{A})=\frac{\mathrm{P}(\mathrm{II}) \cdot \mathrm{P}(\mathrm{A} / \mathrm{I})}{\mathrm{P}(\mathrm{A})}$
$=\frac{\frac{1}{2} \cdot \frac{20}{30}}{\frac{1}{2} \cdot \frac{20}{30}+\frac{1}{2} \cdot \frac{15}{20}}=\frac{\frac{2}{3}}{\frac{2}{3}+\frac{3}{4}}=\frac{8}{17}$
Q. 10 If $p(x)$ be a polynomial of degree three that has a local maximum value 8 at $x=1$ and a local minimum value 4 at $x=2$; then $p(0)$ is equal to :
(1) 12
(2) -12
(3) -24
(4) 6

Sol. 2
$p^{\prime}(1)=0 \& p^{\prime}(2)=0$
$p^{\prime}(x)=a(x-1)(x-2)$
$p(x)=a\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)+b$
$p(1)=8 \Rightarrow a\left(\frac{1}{3}-\frac{3}{2}+2\right)+b=8$
$p(2)=4 \Rightarrow a\left(\frac{8}{3}-\frac{3.4}{2}+2.2\right)+b=4$
from equation (i) and (ii)
$a=24 \& b=-12$
$p(0)=b=-12$
Q. 11 The contrapositive of the statement "If I reach the station in time, then I will catch the train" is:
(1) If I will catch the train, then I reach the station in time.
(2) If I do not reach the station in time, then I will catch the train.
(3) If I do not reach the station in time, then I will not catch the train.
(4) If I will not catch the train, then I do not reach the station in time.

Sol. 4
Statement p and q are true
Statement, then the contra positive of the implication
$p \rightarrow q=(\sim q) \rightarrow(\sim p)$
hence correct Ans. is 4
Q. 12 Let α and β be the roots of the equation, $5 x^{2}+6 x-2=0$. If $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3, \ldots \ldots$, then:
(1) $5 \mathrm{~S}_{6}+6 \mathrm{~S}_{5}+2 \mathrm{~S}_{4}=0$
(2) $6 \mathrm{~S}_{6}+5 \mathrm{~S}_{5}=2 \mathrm{~S}_{4}$
(3) $6 \mathrm{~S}_{6}+5 \mathrm{~S}_{5}+2 \mathrm{~S}_{4}=0$
(4) $5 \mathrm{~S}_{6}+6 \mathrm{~S}_{5}=2 \mathrm{~S}_{4}$

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

Go Premium at ₹ 1100

Doubt Support Advanced Level Test Access

- Live Test Paper Discussion * Final Revision Exercises

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Sol. 4
$5 x^{2}+6 x-2=0<_{\beta}^{\alpha}=5 \alpha^{2}+6 \alpha=2$
$6 \alpha-2=-5 \alpha^{2}$
Simillarly
$6 \beta-2=-5 \beta^{2}$
$\mathrm{S}_{6}=\alpha^{6}+\beta^{6}$
$S_{5}=\alpha^{5}+\beta^{5}$
$S_{4}=\alpha^{4}+\beta^{4}$
Now $6 \mathrm{~S}_{5}-2 \mathrm{~S}_{4}$
$=6 \alpha^{5}-2 \alpha^{4}+6 \beta^{5}-2 \beta^{4}$
$=a^{4}(6 \alpha-2)+\beta^{4}(6 \beta-2)$
$=\alpha^{4}\left(-5 \alpha^{2}\right)+\beta^{4}\left(-5 \beta^{2}\right)$
$=-5\left(\alpha^{6}+\beta^{6}\right)$
$=-5 \mathrm{~S}_{6}$
$=6 \mathrm{~S}_{5}+5 \mathrm{~S}_{6}=2 \mathrm{~S}_{4}$
Q. 13 If the tangent to the curve $y=x+\sin y$ at a point (a, b) is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$, then:
(1) $\mathrm{b}=\frac{\pi}{2}+\mathrm{a}$
(2) $|a+b|=1$
(3) $|b-a|=1$
(4) $b=a$

Sol. 3
$\left.\frac{d y}{d x}\right|_{p(a, b)} ^{c}=\frac{2-\frac{3}{2}}{\frac{1}{2}-0}$
$1+\cos b=1 \mid p:(a, b)$ lies on curve
$\cos b=0 \quad b=a+\sin b$
$b=a \pm 1$
$\mathrm{b}-\mathrm{a}= \pm 1$
$|\mathrm{b}-\mathrm{a}|=1$
Q. 14 Area (in sq. units) of the region outside $\frac{|x|}{2}+\frac{|y|}{3}=1$ and inside the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is:
(1) $3(\pi-2)$
(2) $6(\pi-2)$
(3) $6(4-\pi)$
(4) $3(4-\pi)$

Sol. 2
$c_{1}: \frac{|x|}{2}+\frac{|y|}{3}=1$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

छमारा विश्वास... हू एक विद्यार्यी है ख़ास

$\mathrm{A}=4\left(\frac{\pi \mathrm{ab}}{4}-\frac{1}{2} \cdot 2 \cdot 3\right)$
$\mathrm{A}=\pi .2 .3-12$
$A=6(\pi-2)$
Q. 15 If $|x|<1,|y|<1$ and $x \neq y$, then the sum to infinity of the following series $(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots$ is:
(1) $\frac{x+y+x y}{(1-x)(1-y)}$
(2) $\frac{x+y-x y}{(1-x)(1-y)}$
(3) $\frac{x+y+x y}{(1+x)(1+y)}$
(4) $\frac{x+y-x y}{(1+x)(1+y)}$

Sol. 2
$(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots \infty$
$=\frac{1}{(x-y)}\left\{\left(x^{2}-y^{2}\right)+\left(x^{3}-y^{3}\right)+\left(x^{4}-y^{4}\right)+\ldots \infty\right\}$
$=\frac{\frac{x^{2}}{1-x}-\frac{y^{2}}{1-y}}{x-y}$
$=\frac{x^{2}(1-y)-y^{2}(1-x)}{(1-x)(1-y)(x-y)}$
$=\frac{\left(x^{2}-y^{2}\right)-x y(x-y)}{(1-x)(1-y)(x-y)}=\frac{((x+y)-x y)(x-y)}{(1-x)(1-y)(x-y)}$
$=\frac{x+y-x y}{(1-x)(1-y)}$

CRASH COURSE

FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 16 Let $\alpha>0, \beta>0$ be such that $\alpha^{3}+\beta^{2}=4$. If the maximum value of the term indepen dent of x in the binomial expansion of $\left(\alpha x^{\frac{1}{9}}+\beta x^{-\frac{1}{6}}\right)^{10}$ is 10 k , then k is equal to:
(1) 176
(2) 336
(3) 352
(4) 84

Sol. 2
For term independent of x
$T_{r+1}={ }^{10} C_{r}\left(\alpha X^{\frac{1}{9}}\right)^{10-r} \cdot\left(\beta X^{-\frac{1}{6}}\right)^{r}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}} \alpha^{10-\mathrm{r}} \beta^{r} \cdot x^{\frac{10-\mathrm{r}}{9}} \cdot x^{-\frac{r}{6}}$
$\because \frac{10-r}{9}-\frac{r}{6}=0 \Rightarrow r=4$
$T_{5}={ }^{10} C_{r} \alpha^{6} \cdot \beta^{4}$
$\because \mathrm{AM} \geq \mathrm{GM}$
Now $\frac{\left(\frac{\alpha^{3}}{2}+\frac{\alpha^{3}}{2}+\frac{\beta^{2}}{2}+\frac{\beta^{2}}{2}\right)}{4} \geq \sqrt[4]{\frac{\alpha^{6} \cdot \beta^{4}}{2^{4}}}$
$\left(\frac{4}{4}\right)^{4} \geq \frac{\alpha^{6} \beta^{4}}{2^{4}}$
$\alpha^{6} \cdot \beta^{4} \leq 2^{4}$
${ }^{10} \mathrm{C}_{4} \cdot \alpha^{6} \cdot \beta^{4} \leq{ }^{10} \mathrm{C}_{4} 2^{4}$
$\mathrm{T}_{5} \leq^{10} \mathrm{C}_{4} 2^{4}$
$\mathrm{T}_{5} \leq \frac{10!}{6!4!} \cdot 2^{4}$
$T_{5} \leq \frac{10 \cdot 9 \cdot 8 \cdot 7.2^{4}}{4 \cdot 3 \cdot 2.1}$
maximum value of $T_{5}=10.3 .7 .16=10 \mathrm{k}$
$\mathrm{k}=16.7 .3$
$k=336$

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

Q. 17 Let S be the set of all $\lambda \in \mathrm{R}$ for which the system of linear equations
$2 x-y+2 z=2$
$x-2 y+\lambda z=-4$
$x+\lambda y+z=4$
has no solution. Then the set S
(1) is an empty set.
(2) is a singleton.
(3) contains more than two elements.
(4) contains exactly two elements.

Sol. 4
For no solution
$\Delta=0 \& \Delta_{1}\left|\Delta_{2}\right| \Delta_{3} \neq 0$
$\Delta=\left|\begin{array}{ccc}2 & -1 & 2 \\ 1 & -2 & \lambda \\ 1 & \lambda & 1\end{array}\right|=0$
$2\left(-2-\lambda^{2}\right)+1(1-\lambda)+2(\lambda+2)=0$
$-4-2 \lambda^{2}+1-\lambda+2 \lambda+4=0$
$-2 \lambda^{2}+\lambda+1=0$
$2 \lambda^{2}-\lambda-1=0 \Rightarrow \lambda=1,-1 / 2$
Equation has exactly 2 solution
Q. 18 Let $X=\{x \in N: 1 \leq x \leq 17\}$ and $Y=\{a x+b: x \in X$ and $a, b \in R, a>0\}$. If mean and variance of elements of Y are 17 and 216 respectively then $a+b$ is equal to:
(1)-27
(2) 7
(3)-7
(4) 9

Sol. 3
X : \{1,2,.....17\}
$Y:\{a x+b: x \in X \& a, b \in R, a>0\}$
Given $\operatorname{Var}(\mathrm{Y})=216$
$\frac{\sum y_{1}^{2}}{\mathrm{n}}-(\text { mean })^{2}=216$
$\frac{\sum y_{1}^{2}}{17}-289=216$
$\sum y_{1}=8585$
$(a+b)^{2}+(2 a+b)^{2}+\ldots+(17 a+b)^{2}=8585$
$105 a^{2}+b^{2}+18 a b=505$.
Now $\sum \mathrm{y}_{1}=17 \times 17$
$a(17 \times 9)+17 . b=17 \times 17$
$9 a+b=17 \ldots$ (2)
from equation (1) \& (2)
$a=3 \& b=-10$
$a+b=-7$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTube

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q. 19 Let $y=y(x)$ be the solution of the differential equation, $\frac{2+\sin x}{y+1} \cdot \frac{d y}{d x}=-\cos x, y>0, y(0)=1$. If $y(\pi)=a$, and $\frac{d y}{d x}$ at $x=\pi$ is b, then the ordered pair (a, b) is equal to:
(1) $\left(2, \frac{3}{2}\right)$
(2) $(1,1)$
(3) $(2,1)$
(4) $(1,-1)$

Sol. 2
$\int \frac{d y}{y+1}=\int \frac{-\cos x d x}{2+\sin x}$
$\ln |y+1|=-\ln |2+\sin x|+k$
$\downarrow(0,1)$
$\mathrm{k}=\ln 4$
Now C: $(y+1)(2+\sin x)=4$
$y(\pi)=a \Rightarrow(a+1)(2+0)=4 \Rightarrow(a=1)$
$\left.\frac{d y}{d x}\right|_{x=\pi}=b \Rightarrow b=-(-1)\left(\frac{2+0}{1+1}\right)$
$\Rightarrow b=1$
$(a, b)=(1,1)$
Q. 20 The plane passing through the points $(1,2,1),(2,1,2)$ and parallel to the line, $2 x=3 y, z=1$ also passes through the point:
(1) $(0,-6,2)$
(2) $(0,6,-2)$
(3) $(-2,0,1)$
(4) $(2,0,-1)$

Sol. 3
$L:\left\{\begin{array}{cc}2 x=3 y \\ z=1\end{array}\left\langle_{Q:(3,2,1)}^{P:(0,0,1)}\right.\right.$
\vec{V}_{L} Dr of line $(3,2,0)$

$\vec{n}_{p}=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{V}}_{\mathrm{L}}$
$\vec{n}_{p}=\langle 1,-1,1\rangle \times\langle 3,2,0\rangle$
$\overrightarrow{\mathrm{n}}_{\mathrm{p}}=\langle-2,+3,5\rangle$
Plane : $-2(x-1)+3(y-2)+5(z-1)=0$

हमारा विश्वास... हू एक विद्यार्यी है खुास

Plane : $-2 x+3 y+5 z+2-6-5=0$
Plane: $2 x-3 y-5 z=-9$
Q. 21 The number of integral values of k for which the line, $3 x+4 y=k$ intersects the circle, $x^{2}+y^{2}-2 x-$ $4 y+4=0$ at two distinct points is.
Sol. 9
$c:(1,2) \& r=1$
$|c p|<r$
$\left|\frac{3.1+4.2-k}{5}\right|<1$
$|11-k|<5$
$-5<k-11<5$
$6<k<16$
$k=7,8,9, \ldots \ldots ., 15 \Rightarrow$ total 9 value of k

Q. 22 Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $|\vec{a}-\vec{b}|^{2}+|\vec{a}-\vec{c}|^{2}=8$. Then $|\vec{a}+2 \vec{b}|^{2}+|\vec{a}+2 \vec{c}|^{2}$ is equal to :
Sol. 2
$|\vec{a}-\vec{b}|^{2}+|\vec{a}-\vec{c}|^{2}=8$
$(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})+(\vec{a}-\vec{c})(\vec{a}-\vec{c})=8$
$a^{2}+b^{2}-2 a \cdot b+a^{2}+c^{2}-2 a \cdot c=8$
$2 a^{2}+b^{2}+c^{2}-2 a \cdot b-2 a \cdot c=8$
$a . b+a . c=-2$
Now $|\vec{a}+2 \vec{b}|^{2}+|\vec{a}+2 \vec{c}|^{2}$
$=2 a^{2}+4 b^{2}+4 c^{1}+4 \bar{a} \cdot \bar{b}+4 \bar{a} \cdot \bar{c}$
$=2+4+4+4(-2)$
$=2$
Q. 23 If the letters of the word 'MOTHER' be permuted and all the words so formed (with or without meaning) be listed as in a dictionary, then the position of the word 'MOTHER' is..........
Sol. 309
EHMORT

E $-\ldots-$	$=5!$
H $-\cdots$	$=5!$
M E - -	$=4!$
M H $-\cdots$	$=4!$
M O E -	$=3!$
M O H -	$=3!$
M OR -	$=3!$
M O T E -	$=2!$
MOTHER	$\underline{=1}$

CRASH COURSE
FOR JEE ADVANCED 2020
FREE Online Lectures Available onYouTuhe

हमारा विश्वास... हर एक विद्यार्थी है ख़ास
Q.24. If $\lim _{x \rightarrow 1} \frac{x+x^{2}+x^{3}+\ldots+x^{n}-n}{x-1}=820,(n \in N)$ then the value of n is equal to :

Sol. 40
$\lim _{x \rightarrow 1} \frac{(x-1)}{x-1}+\frac{\left(x^{2}-1\right)}{x-1}+\ldots .+\frac{\left(x^{n}-1\right)}{x-1}=820$
$\Rightarrow 1+2+3+\ldots \ldots+n=820$
$\Rightarrow \Sigma \mathrm{n}=820$
$\Rightarrow \frac{\mathrm{n}(\mathrm{n}+1)}{2}=820$
$\Rightarrow \mathrm{n}=40$
Q. 25 The integral $\int_{0}^{2}| | x-1|-x| d x$ is equal to :

Sol. 1.5

$\int_{0}^{2}| | x-1|-x| d x$
$=\int_{0}^{1}|1-x-x| d x+\int_{1}^{2}|x-1-x| d x$
$=\int_{0}^{1}|2 x-1| d x+\int_{1}^{2} 1 d x$
$=\int_{0}^{\frac{1}{2}}(1-2 x) d x+\int_{\frac{1}{2}}^{1}(2 x-1) d x+\int_{1}^{2} 1 d x$
$=\left[\left(\frac{1}{2}-0\right)-\left(\frac{1}{4}-0\right)\right]+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)+1$
$=\frac{1}{2}-\frac{1}{4}+\frac{3}{4}-\frac{1}{2}+1$
$=\frac{3}{2}$

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

 JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION

SERVICES			
SILVER		GOLD	
Classroom Lectures (VOD)	NA		
Live interaction	NA		
Doubt Support	NA		
Academic \& Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA	NA	
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop \& Camp	NA	NA	
Motion Solution Lab- Supervised			
learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring			

FEE STRUCTURE			
CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹ 12,000	₹ 35,000
9th/10th	FREE	₹ 15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

+ Student Kit will be provided at extra cost to Platinum Student.
* SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
** GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
*** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from :
16 \& 23 September 2020
Zero Cost EMI Available

